Строение крыла самолета. "Командир, мы падаем!" Почему в последние секунды экипаж говорил о закрылках? Механика крыла

В этой статье мы рассмотрим основные принципы захода на посадку на больших реактивных самолетах применительно к нашим условиям. Хотя за основу рассмотрения выбран Ту-154, следует учитывать, что на других типах ВС применяются, в общем, сходные принципы пилотирования. Информацию взята из расчета на реальную технику, а испытывать судьбу мы будем пока в MSFS98-2002, есть у фирмы "Микрософт" такой компьютерный симулятор, возможно, вы даже слышали...

Посадочная конфигурация самолета

Конфигурация самолета - сочетание положений механизации крыла, шасси, частей и агрегатов ВС, определяющих его аэродинамические качества.

На транспортном самолете, еще до входа в глиссаду, должна быть выпущена механизация крыла, шасси и переложен стабилизатор. Кроме того, по решению командира воздушного судна, экипаж может включить автопилот и/или автомат тяги для захода в автоматическом режиме.

Механизация крыла

Механизация крыла - комплекс устройств на крыле, предназначенных для регулирования его несущей способности и улучшения характеристик устойчивости и управляемости. Механизация крыла включает закрылки, предкрылки, щитки (интерцепторы), активные системы управления пограничным слоем (например, его сдув, отбираемым от двигателей воздухом) и т.д.

Закрылки (flaps)

В целом, закрылки и предкрылки предназначены для повышения несущей способности крыла на взлетно-посадочных режимах.

Аэродинамически, это выражается в следующем:

  1. закрылки увеличивают площадь крыла, что приводит к увеличению подъемной силы.
  2. закрылки увеличивают кривизну профиля крыла, что приводит к более интенсивному отклонению воздушного потока вниз, что также увеличивает подъемную силу.
  3. закрылки увеличивают аэродинамическое сопротивление самолета, а значит вызывают уменьшение скорости.

Увеличение подъемной силы крыла позволяет снизить скорость до более низкого предела. Например, если при массе 80 т скорость сваливания Ту-154Б без закрылков составляет 270 км/ч, то после выпуска закрылков полностью (на 48 град) она уменьшается до 210 км/ч. Если уменьшить скорость ниже этого предела, самолет выйдет на опасные углы атаки, возникнет срывная тряска (бафтинг, buffeting) (особенно при убраных закрылках) и, в конце концов, произойдет сваливание в штопор .

Крыло, оборудованное закрылками и предкрылками, образующими в нем профилированные щели, называют щелевым . Закрылки также могут состоять из нескольких панелей и иметь щели. Например, на Ту-154М применяются двухщелевые , а на Ту-154Б трехщелевые закрылки (на фото Ту-154Б-2). На щелевом крыле воздух из области повышенного давления под крылом с большой скоростью поступает через щели на верхнюю поверхность крыла, что приводит к уменьшению давления на верхней поверхности. При меньшей разности давлений, обтекание крыла получается более плавным и тенденция к формированию срыва уменьшается.

Угол атаки (УА), Angle of Attack (AoA)

Основное понятие аэродинамики. Углом атаки профиля крыла называется угол, под которым профиль обдувается набегающим потоком воздуха. В нормальной ситуации УА не должен превышать 12-15 град, в противном случае возникает срыв потока , т.е. образование турбулентных “бурунчиков” за крылом, как в быстром ручье, если поставить ладонь не вдоль, а поперек потока воды. Срыв приводит к потере подъемной силы на крыле и сваливанию самолета.

На "небольших" самолетах (включая Як-40, Ту-134) выпуск закрылков обычно приводит к “вспуханию” - самолет немного увеличивает вертикальную скорость и задирает нос. На "больших" самолетах стоят системы улучшения устойчивости и управляемости , которые автоматически парируют возникающий момент опусканием носа. Такая система есть на Ту-154 поэтому там "вспухание" невелико (кроме того, там момент выпуска закрылков совмещено с моментом перекладки стабилизатора, который создает противоположный момент). На Ту-134 пилоту приходится гасить увеличение подъемной силы вручаную отклоняя штурвальную колонку от себя. В любом случае, для уменьшения "вспухания", закрылки принято выпускать в два или три приема - обычно сначала на 20-25, потом на 30-45 градусов.

Предкрылки (slats)

Кроме закрылков, почти все транспортные самолеты также имеют предкрылки , которые установлены в передней части крыла, и автоматически отклоняются вниз одновременно с закрылками (пилот о них почти не думает). Принципиально они выполняет ту же функцию, что и закрылки. Отличие состоит в следующим:

  1. На больших углах атаки, отклоненные вниз предкрылки как крючком цепляются за набегающий поток воздуха, отклоняя его вниз вдоль профиля. В результате, предкрылки уменьшают угол атаки остальной части крыла и откладывают момент сваливания на большие углы атаки.
  2. Предкрылки обычно имеют меньший размер, а значит и меньшее лобовое сопротивление.

В целом, выпуск как закрылков так и предкрылков сводится к увеличению кривизны профиля крыла, что позволяет сильнее отклонять вниз набегающий поток воздуха, а значит увеличивать подъемную силу.

Насколько до сих пор известно, предкрылки отдельно в аir-файле не выделены.

Чтобы понять, на фига на самолетах применяется такая сложная механизация, понаблюдайте за приземлением птиц. Часто можно обратить внимание, как голуби и им подобные вороны садятся сильно распушив крылья, поджимая хвост и стабилизатор под себя, пытаясь получить профиль крыла большой кривизны и создать хорошую воздушную подушку. Это и есть выпуск закрылков и предкрылков.

Механизация B-747 на посадке

Интерцепторы (spoilers)

Интерцепторы , они же спойлеры представляют собой отклоняемые тормозные щитки на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъемную силу (в отличие от закрылков и предкрылков). Поэтому интерцепторы (особенно на "илах") также называют гасителями подъемной силы .

Интерцепторы - это очень широкое понятие, в которое напичкано много всяких разновидностей гасителей, и на разных типах они могут называться по-разному и располагаться в разных местах.

В качестве примера рассмотрим крыло самолета Ту-154, на котором применяются три типа интерцепторов:

1) внешние элерон-интерцепторы (spoilerons, roll spoilers)

Элерон-интерцепторы представляют собой дополнение к элеронам. Они отклоняются несимметрично. Например на Ту-154, при отклонении левого элерона вверх на угол до 20 град, левый элерон-интерцептор автоматически отклоняются вверх на угол до 45 град. В результате подъемная сила на левом полукрыле уменьшается, и самолет кренится влево. То же самое для правого полукрыла.

Почему нельзя обойтись только одними элеронами?

Дело в том, что чтобы создать момент крена на большом самолете, нужна большая площадь отклоняемых элеронов. Но, поскольку реактивные самолеты летают на скоростях близких к звуковым, они должны иметь тонкий профиль крыла, который бы не создавал слишком большого сопротивления. Применение больших элеронов приводило бы к его скручиванию и всяким нехорошим явлениям типа реверса элеронов (такое, например, может иметь место быть на Ту-134). Поэтому нужен способ распределить нагрузку на крыло более равномерно. Для этого и используются элерон-интерцепторы.- щитки, установленные на верхней поверхности, которые при отклонении вверх, уменьшают подъемную силу на данном полукрыле, и "топят" его вниз. Скорость вращения по крену при этом значительно возрастает.

Пилот не задумывается об элерон-интерцепторах, с его точки зрения, все происходит автоматически.

В air-файле элерон-интерцепторы, в принципе, предусмотрены.

2) средние интерцепторы (spoilers, speed brakes)

Средние интерцепторы это то, что обычно понимают под просто "интерцепторами" или "спойлерами" - т.е. "воздушные тормоза". Симметричное задействование интерцепторов на обеих половинах крыла приводит к резкому уменьшению подъемной силы и торможению самолета. После выпуска "воздушных тормозов" самолет сбалансируется на большем угле атаки, начнет тормозиться за счет возросшего сопротивления и плавно снижаться.

На Ту-154 средние интерцепторы отклоняются на произвольный угол до 45 град с помощью рычага на среднем пульте пилотов. Это к вопросу, где у самолета стоп-кран.

На Ту-154 внешние и средние интерцепторы это конструктивно разные элементы, но на других самолетах "воздушные тормоза" могут быть конструктивно совмещены с элерон-интерцепторами. Например, на Ил-76 интерцепторы обычно работают в элеронном режиме (с отклонением на угол до 20 град), а при необходимости - в тормозном (с отклонением на угол до 40 град).

Выпускать средние интерцепторы при заходе на посадку не надо. Вообще-то, выпуск интерцепторов после выпуска шасси обычно запрещен. В нормальной ситуации, интерцепторы выпускаются для более быстрого снижения с эшелона с вертикальной скоростью до 15 м/c и после после приземления самолета. Кроме того, они могут применяться при прерванном взлете и экстренном снижении.

Бывает, что "виртуальщики" при заходе на посадку забывают убрать газ, и держат режим чуть ли не на взлетном, пытаясь вписаться в схему посадки с очень высокой скоростью, вызывая гневные вопли диспетчера в стиле “Maximum speed below ten thousand feet is 200 knots!” В таких случаях можно кратковременно выпустить средние интерцепторы, но в реальности, это вряд ли приведет к чему-нибудь хорошему. Лучше пользоваться таким грубым методом гашения скорости заблаговременно - только на снижении, причем не всегда обязательно выпускать интерцепторы на полный угол.

3) внутренние интерцепторы (ground spoilers)

Также "тормозные щитки"

Расположены на верхней поверхности во внутренней (корневой) части крыла между фюзеляжем и гондолами шасси. У Ту-154 автоматически отклоняются на угол 50 град после приземления при обжатии основных аморстоек шасси, скорости более 100 км/ч и РУД-ах в положении "малый газ" или "реверс". Одновременно отклоняются и средние интерцепторы..

Внутренние интерцепторы предназначены для гашения подъемной силы после приземления или при прерваном взлете. Как и другие типы интерцепторов, они не столько гасят скорость, сколько гасят подъемную силу крыла, что приводит к увеличению нагрузки на колеса и улучшению сцепления колес с поверхностью. Благодаря этому после выпуска внутренних интерцепторов можно переходить к торможению с помощью колес.

На Ту-134 тормозные щитки - это единственный тип интерцепторов.

В симуляторе внутренние интерцепторы либо отсутствуют, либо воссоздаются достаточно условно.

Балансировка по тангажу

Большие самолеты имеют ряд особенностей управления по тангажу, о которых нельзя не упомянуть. Триммирование, центровка, балансировка, перекладка стабилизатора, расход штурвальной колонки. Рассмотрим эти вопросы более подробно.

Тангаж (pitch)

Тангаж (pitch) - угловое движение летательного аппарата относительно поперечной оси инерции, а проще говоря "задир". У моряков эта фигня называется "дифферент". Тангаж противопоставлен крену (bank) и рысканию (yaw) , которые соответственно характеризуют положения ЛА при его вращении вокруг продольной и вертикальной оси. Соответственно различают углы тангажа, крена и рысканья (иногда их называют углы Эйлера). Термин "рысканье" можно заменять словом "курс", например говорят "в канале курса".

Отличие угла тангажа от угла атаки, надеюсь объяснять нет необходимости... Когда самолет падает совершенно плашмя, как утюг, угол атаки у него будет 90 град, а угол тангажа будет близок к нулю. Наоборот, когда истребитель идет в наборе, на форсаже, с хорошей скоростью, у него угол тангажа может быть 20 град, а угол атаки, скажем, всего 5 град.

Триммирование

Чтобы обеспечить нормальное пилотирование, усилие на штурвале должно быть ощутимым, в противном случае, любое случайное отклонение могло бы ввести самолет в какой-нибудь нехороший штопор. Собственно говоря, именно поэтому на тяжелых самолетах, не предназначенных для выполнения резких маневров, обычно применяются штурвалы, а не ручки - их не так просто случайно отклонить по крену. (Исключение составляет Airbus, который предпочитает джойстики.)

Понятно, что при затяжеленном управлении бицепсы у пилота будут постепенно развиваться довольно приличные, более того, если самолет разбалансирован по усилиям его трудно пилотировать, т.к. любое ослабление усилия толкнет штурвальную колонку (ШК) не туда, куда надо. Поэтому, чтобы в процессе выполнения полета, летчики могли иногда хлопнуть стюардессу Катьку по заднице, на самолетах устанавливают триммеры.

Триммер - устройство, которое тем или иным способом фиксирует штурвал (ручку управления) в заданном положении, дабы папелац мог снижаться, набирать высоту и лететь в горизонтальном полете и т.д. без приложения усилий к штурвальной колонке.

В результате триммирования, точка, в которую тянет штурвал (ручку), будет не совпадать с нейтральным положением для данного руля. Чем дальше от положения триммирования, тем большие усилия приходится прикладывать, чтобы удержать штурвал (ручку) в заданном положении.

Чаще всего, под триммером имеют в виду триммер в канале тангажа - т.е. триммер руля высоты (РВ). Тем не менее, на больших самолетах триммеры на всякий случай, ставят во всех трех каналах - там они обычно выполняют вспомогательную роль. Например, в канале крена триммирование может применятся при продольной разбалансировки самолета из-за несимметричной выработки топлива из крыльевых баков, т.е. когда одно крыло перетягивает другое. В канале курса - при отказе двигателя, чтобы самолет не рыскал в сторону, когда один двигатель не работает. И т.д.

Триммирование можно технически реализовать следующими способами:

1) с помощью отдельного аэродинамического триммера , как на Ту-134- т.е. маленького "рулька" на руле высоты, который удерживают основной руль в заданном положении с помощью аэродинамической компенсации, т.е. используя силу набегающего потока. На Ту-134 для управления таким триммером используется колесо триммера , на которое наматывается трос, идущий к РВ.

2) с помощью МЭТ (механизма эффекта триммирования) , как на Ту-154 - т.е. просто регулируя затяжку в системе пружин (правильнее сказать, пружинных загружателей ), которые чисто механически удерживает штурвальную колонку в заданном положении. Когда шток МЭТ перемещается вперед-назад, загружатели то ослабляются, то натягиваются. Для управления МЭТ используются небольшие нажимные переключатели на рукоятках штурвалов, при включении которых, шток МЭТ, а за ним и штурвальная колонка медленно перемещаются в заданное положение. Аэродинамические триммеры как на Ту-134, на Ту-154 отсутствуют.

3) с использованием переставного стабилизатора , как на большинстве западных типов (см ниже)

В симуляторе трудно воссоздать настоящий триммер руля высоты, для этого придется использовать навороченный джойстик с эффектом триммирования, потому что, то, что в MSFS называется триммером, по сути, не стоит воспринимать как таковой - правильнее было бы замазать джойстик пластилином или жевачкой или просто положить мышь на стол (в FS98) - вот вам и триммер. Надо сказать, что управление это вообще больное место всех симуляторов. Даже если купить самый навороченный штурвал и систему педалей, оно все равно, скорее всего, будет далековато от реального. Имитация она и есть имитация, потому что, чтобы получить абсолютно точную копию настоящего самолета нужно затратить столько же усилий и переработать столько же информации, сколько и для того, чтобы построить настоящий самолет...

Центровка (CG)

Центровка воздушного судна (Center of Gravity (CG) position) - положение центра тяжести, измеряемое в процентах длины так называемой средней аэродинамической хорды (САХ, Mean Aerodynamic Chord, MAC) - т.е. хорды условного прямоугольного крыла, равноценного данному крылу, и имеющее с ним одинаковую площадь.

Хорда - отрезок прямой, соединяющий переднюю и заднюю кромку профиля крыла.

положение центра тяжести 25% САХ

Длину средней аэродинамической хорды находят интегрированием по длинам хорд вдоль всех профилей полукрыла. Грубо говоря, САХ характеризуют наиболее распространенный, наиболее вероятный профиль крыла. т.е. предполагается, что все крыло со всем его разнобоем профилей можно заменить одним единственном усредненным профилем с одной единственной усредненной хордой - САХ.

Чтобы найти положение САХ, зная его длину, нужно пересечь САХ с контуром реального крыла и посмотреть, где находится начало полученного отрезка. Эта точка (0% САХ) и будет служить точкой отсчета для определения центровки.

Разумеется, транспортный самолет не может иметь постоянную центровку. Она будет меняться от вылета к вылету из-за перемещений грузов, изменения количества пассажиров, а также в процессе полета по мере выработки топлива. Для каждого самолета определен допустимый диапазон центровок, при котором обеспечивается его хорошая устойчивость и управляемость. Обычно различают переднюю (для Ту-154Б - 21-28%), среднюю (28-35%) и заднюю (35-50%) центровки - для других типов цифры будут несколько отличаться.

Центровка пустого самолета сильно отличается от центровки заправленного самолета со всеми грузами и пассажирами, и для ее расчета перед вылетом заполняется специальный центровочный график .

Пустой Ту-154Б имеет центровку порядка 49-50% САХ, при том, что при 52,5% он уже опрокидывается на хвост (двигатели на хвосте перетягивают). Поэтому под хвостовой частью фюзеляжа в некоторых случаях необходимо устанавливать страховочную штангу.

Балансировка в полете

У самолета со стреловидным крылом центр приложения подъемной силы на крыле расположен в точке примерно 50-60% САХ, т.е. позади центра тяжести, который в полете обычно располагается в районе 20-30 % САХ.

В результате, в горизонтальном полете на крыле возникает рычаг подъемной силы , который хочет опрокинуть самолет на нос, т.е. в нормальной ситуации самолет находится под действием пикирующего момента .

Чтобы избежать всего этого, в течении всего полета придется парировать возникающий пикирующий момент балансировочным отклонением РВ , т.е. отклонение руля высоты не будет равно нулю даже в горизонтальном полете.

В основном, чтобы удержать самолет от "клевка" нужно будет создавать кабрирующий момент , т.е. РВ нужно будет отклоняться вверх.

Кабрировать - от фр. cabrer , "ставить на дыбы".

Всегда только вверх? Нет, не всегда.

При увеличении скорости, скоростной напор увеличится, а значит пропорционально возрастет суммарная подъемная сила на крыле, на стабилизаторе и на руле высоты

F под = F под1 – F под2 – F под3

Но сила тяжести останется прежней, а значит самолет перейдет в набор. Чтобы снова сбалансировать папелац в горизонтальном полете, придется опустить руль высоты пониже (отдать штурвал от себя), т.е. уменьшить слагаемое F под3 . Тогда нос опустится, и самолет снова сбалансируется в горизонтальном полете, но уже на меньшем угле атаки.

Таким образом, для каждой скорости у нас будет свое балансировочное отклонение РВ - мы получим ажно целую балансировочную кривую (зависимость отклонения РВ от скорости полета). На больших скоростях, придется отдавать штурвальную колонку от себя (РВ вниз), чтобы удержать самик от кабрирования, на малых скоростях придется брать штурвальную колонку на себя (РВ вверх), чтобы удержать самик от пикирования . Штурвал и руль высоты будут находится в нейтральном положении только на какой-то одной определенной приборной скорости (около 490 км/ч для Ту-154Б).

Стабилизатор (Horizontal Stabilizer)

Кроме того, как видно из приведенной схемы, самолет можно балансировать не только рулем высоты, но и переставным стабилизатором (слагаемое Fпод2). Такой стабилизатор с помощью специального механизма может целиком устанавливаться на новый угол. Эффективность такой перекладки будет примерно в 3 раза выше - т.е. 3 град отклонения РВ будут соответствовать 1 град отклонения стабилизатора, т.к. его площадь горизонтального стабилизатора у "тушки" примерно в 3 раза больше площади РВ.

В чем преимущество использования переставного стабилизатора? Прежде всего в том, что при этом уменьшается расход руля высоты . Дело в том, что иногда из-за слишком передней центровки для удержания самолета на определенном угле атаки приходится использовать весь ход штурвальной колонки - пилот выбрал управление полностью на себя, и дальше самолет уже не заманишь вверх никакой морковкой. Это особенно может иметь место на посадке с предельно передней центровкой, когда при попытке ухода на второй круг, руля высоты может не хватить. Собственно говоря, значение предельно передней центровки и устанавливаются из расчета, чтобы располагаемого отклонения руля высоты хватало на всех режимах полета.

Поскольку РВ отклоняется относительно стабилизатора, то нетрудно видеть, что применение переставного стабилизатора уменьшит расход штурвала и увеличит доступный диапазон центровок и доступных скоростей . А значит можно будет взять больше грузов и расположить их более удобным способом.

В горизонтальном полете на эшелоне стабилизатор Ту-154 находится под углом -1.5 град на кабрирование по отношению к фюзеляжу, т.е. почти горизонтально. На взлете и на посадке , он перекладывается дальше на кабрирование на угол до -7 град относительно фюзеляжа, чтобы создать достаточный угол атаки для поддержания самолета в горизонтальном полете на малой скорости.

Особенностью Ту-154 является то, что перестановка стабилизатора осуществляется только на взлете и на посадке , а в полете он убирается в положение -1.5 (которое считается нулевым), и самолет тогда балансируется одним рулем высоты.

При этом, для удобства экипажа и по ряду других причин, перекладка совмещена с выпуском закрылков и предкрылков, т.е. при переводе рукоятки закрылков из положения 0 в положение на выпуск, автоматически выпускаются предкрылки и стабилизатор перекладывается в согласованное положение. При уборке закрылков после взлета - то же самое, в обратном порядке.

Приведем таблицу, которая висит в кабине экипажа, чтобы постоянно ему напоминать, что у них там блин на фиг выпускается...

Таким образом, все происходит само собой. На круге перед посадкой на скорости 400 км/ч экипаж только должен проверить соответствует ли балансировочное отклонение РВ положению задатчика стабилизатора и, если нет, то устанавить задатчик в нужное положение. Скажем, стрелка указателя положения РВ в зеленом секторе, значит задатчик ставим на зеленое "П" - все достаточно просто и не требует значительных умственных усилий...

При отказах автоматики все выпуски и перекладки механизации можно проделать и в ручном режиме. Например, если речь идет о стабилизаторе, нужно откинуть колпак слева на фото и переставить стабилизатор в согласованное положение.

На других типах ВС, эта система работает иначе. Например на Як-42, MD-83, B-747 (затрудняюсь сказать за всю Одессу, но так должно быть на большинстве западных самолетов) стабилизатор отклоняется в течение всего полета и полностью заменяет собой триммер . Такая система более совершенна, т.к позволяет уменьшить сопротивление в полете, поскольку стабилизатор из-за большой площади отклоняется на меньшие углы, чем РВ.

На Як-40, Ту-134 стабилизатор также обычно регулируется независимо от механизации крыла.

Теперь об MSFS. В симуляторе мы имеем ситуацию "триммирующего стабилизатора", как на западных типах. Отдельного виртуального триммера в МSFS нет. Та прямоугольная штучка (как на "цесссне"), которая у микрософт называется "триммером" на самом деле является стабилизатором, что заметно, по независимости ее работы от РВ.

Почему так? Вероятно, все дело в том, что изначально (в конце 80-х) FS использовался как программная база для полнофункциональных тренажеров, на которых стояли реальные штурвальные колонки и реальные МЭТ-ы. Когда МS купила (сперла?) FS, она не стала глубоко вникать в особенности его работы (а возможно, даже не имела к нему полного описания), поэтому стабилизатор стал называться триммером. По крайней мере, такое предположение хочется сделать, изучая MS+FS, ведь описание к air-файлу так и не было опубликовано, а по качеству дефолтных моделей и ряду других признаков можно сделать вывод, что микрософт и само в нем не особо разбирается.

В случае Ту-154, вероятно, следует установить микрософтовский триммер один раз перед посадкой в горизонтальном полете, чтобы индикатор руля высоты был приблизительно в нейтральном положении, и больше к нему не возвращаться, а работать только триммером джойстика, которого ни у кого нет... Или работать c "прямоугольной штучкой", закрывать глаза и повторять про себя: "Это не стабилизатор, это не стабилизатор...."

Автомат тяги (Auto Throttle)

В штурвальном режиме КВС или 2П управляет двигателями с помощью РУД-ов (рычагов управления двигателями) на среднем пульте или подавая команды бортинженеру: "Режим такой-то"

Иногда бывает удобно управлять двигателями не вручную, а с помощью автомата тяги (auto throttle, АТ) , который старается удержать скорость в допустимых пределах, автоматически регулируя режим двигателей.

Включите АТ (клавиша Shift R), задайте нужную скорость на УС-И (указатель скорости), и автоматика будет пытаться выдерживать ее без вмешательства пилота. На Ту-154 скорость при включенном АТ-6-2 можно регулировать двумя способами 1) вращая кремальеру на левом либо на правом УС-И 2) вращая регулятор на ПН-6 (=пультик СТУ и автомата тяги).

Разновидности систем посадки

Различают визуальный заход и заход по приборам .

Чисто визуальный заход на посадку на больших самолетах применяется редко и может вызвать трудности даже у опытного экипажа. Поэтому обычно заход осуществляется по приборам , т.е. с применением радиотехнических систем под управлением и контролем диспетчера УВД .

Управление воздушным движением (УВД, Air Traffic Control, ATC) - управление движением воздушных судов в полете и на площади маневрирования аэродрома.

Радиотехнические системы посадки

Рассмотрим заходы с применением радиотехнических систем посадки. Их можно подразделить на следующие типы:

“по ОСП” , т.е. с использованием ДПРМ и БПРМ

“по РМС” , т.е. с использованием ILS

“по РСП” , т.е. по локатору.

Заход по ОСП

Также известен как "заход по приводам" .

ОСП (оборудование системы посадки) - комплекс наземных средств, включающих две приводных радиостанции с маркерными радиомаяками, а также светотехническое оборудование (СТО) , установленное на аэродроме по утвержденной типовой схеме.

Конкретно, ОСП включает в себя

"дальний" (приводной радиомаяк) (ДПРМ, Outer Marker, OM) - дальнюю приводную радиостанцию со своим маркером, которая располагается в 4000 (+/- 200) м от торца ВПП. При пролете маркера в кабине срабатывает световая и звуковая сигнализация. Морзянка cигнала в системе ILS имеет вид “тире-тире-тире...“.

"ближний" (приводной радиомаяк) (БПРМ, Middle Marker, MM) - ближнюю приводную радиостанцию тоже со своим маркером, которая располагается в 1050 (+/- 150) м от торца ВПП. Морзянка в системе ILS имеет вид “тире-точка-...“

Приводные радиостанции работают в диапазоне 150-1300 кГц.

При полете по кругу, первый и второй комплекты автоматического радиокомпаса (АРК, Automatic Direction Finder, ADF) настраиваются на частоты ДПРМ и БПРМ- при этом одна стрелка на указателе АРК будет показывать на ДПРМ, вторая на БПРМ.

Напомним, что стрелка указателя АРК всегда показывает на радиостанцию подобно тому, как стрелка магнитного компаса, всегда показывает на север. Следовательно, при полете по схеме, момент начала четвертого разворота можно определить по курсовому углу радиостанции (КУР) . Скажем, если ДПРМ радиостанция точно слева, то КУР=270 град. Если мы хотим развернуться на нее, то разворот нужно начинать на 10-15 град раньше (т.е. при КУР=280...285 град). Пролет над радиостанцией будет сопровождаться разворотом стрелки на 180 град.

Таким образом, при полете по кругу курсовой угол ДПРМ помогает определить моменты начала выполнения разворотов на круге. В этом плане ДПРМ представляет собой что-то вроде точки отсчета, относительно которой рассчитываются многие действия при заходе на посадку.

К радиостанции также присобачен маркер , или маркерный радиомаяк - передатчик, посылающий вверх узконаправленный сигнал, который при пролете над ним воспринимается самолетными приемниками и заставляет срабатывать индикаторную лампочку и электрозвонок. Благодаря этому, зная на какой высоте следует проходить ДПРМ и БПРМ (обычно это 200 и 60 м соответственно) можно получить две точки, по которым можно построить предпосадочную прямую.

На западе, на аэродромах категории II и III cо сложным рельефом местности на расстоянии 75..100 м от торца ВПП устанавливают еще и внутренний радиомаркер (Inner Marker, IM) (c морзянкой “точка-точка-точка....“), который используется как дополнительное напоминание экипажу о приближении к моменту начала визуального наведения и необходимости принятия решения о посадке.

Комплекс ОСП относится к упрощенным системам посадки, он должен обеспечивать экипажу воздушного судна привод в район аэродрома и маневр снижения до высоты визуального обнаружения ВПП. На практике он играет вспомогательное значение и обычно не отменяет необходимость использования системы ILS или посадочного радиолокатора. Чисто по ОСП заходят только при отсутствии более совершенных систем посадки.

При заходе только по ОСП горизонтальная видимость должна составлять не менее 1800 м, вертикальная не менее 120 м. Если этот метеоминимум не соблюдается, необходимо уйти на запасной аэродром .

Обратите внимание, что ДПРМ и БПРМ на разных концах полосы имеют одну и ту же частоту. В нормальной ситуации, радиостанции на другом конце должны быть выключены, но в симе это не так, поэтому при полете по кругу, АРК часто начинает глючить, цепляя то одну радиостанцию, то другую.

Заход по РМС

Также говорят "заход по системе" . В общем-то, это то же самое, что и заход по ILS. (см.также статью Дмитрия Просько на этом сайте)

В русскоязычной терминологии радиомаячная система посадки (РМС) используется как обобщающий термин, который включает в себя различные разновидности систем посадки- в частности, ILS (Instrument Landing System) (как западный стандарт) и СП-70, СП-75, СП-80 (как отечественные стандарты).

Принципы захода по РМС достаточно просты.

Наземная часть РМС состоит из двух радиомаяков - курсового радиомаяка (КРМ) и глиссадного радиомаяка (ГРМ) , которые излучают два наклонных луча (равносигнальные зоны) в вертикальной и горизонтальной плоскости. Пересечение этих зон образует траекторию захода на посадку. Самолетные приемные устройства определяют положение самолета относительно этой траектории и выдают управляющие сигналы на командно-пилотажный прибор ПКП-1 (проще говоря, на авиагоризонт) и планово-навигационный прибор ПНП-1 (проще говоря, на указатель курса).

Если частота настроена правильно, то при подходе к полосе пилот увидит на большом авиагоризонте две перемещающихся линии - вертикальную командную стрелку курса и горизонтальную командную стрелку глиссады , а также два треугольных индекса, обозначающих положение ВС относительно расчетной траектории.

Когда летишь в самолете пассажиром и сидишь у иллюминатора напротив крыла, это кажется магией. Все эти штучки, которые выдвигаются, поднимаются, опускаются, убираются, а самолет в итоге летит. Но когда начинаешь обучение пилотированию и управляешь самолетом самостоятельно, становится ясно: никакой магии, а чистая физика, логика и здравый смысл.

Все вместе эти штуковины называются «механизация крыла». В буквальном переводе на английский high lift devices. Дословно – приспособления для увеличения подъемной силы. Более точно – для изменения характеристик крыла на разных стадиях полета.

По мере развития авиатехники количество этих устройств становилось все больше – закрылки, предкрылки, щитки, флапероны, элероны, элевоны, интерцепторы и другие средства механизации. Но самыми первыми изобрели закрылки. Они же являются самыми эффективными, а на некоторых самолетах – и единственными. И если маленький легкомоторный самолет вроде Цессна 172S теоретически на взлете можно обойтись и без них, то большой пассажирский авиалайнер без использования закрылков в прямом смысле слова не сможет оторваться от земли.

Не вся скорость одинаково полезна
Современное авиастроение – это вечные поиски баланса между прибылью и безопасностью. Прибыль – это возможность преодолевать как можно большие расстояния, то есть высокая скорость в полете. Безопасность – это, напротив, относительно невысокая скорость на взлете и особенно посадке. Как это совместить?

Чтобы быстро лететь, нужно крыло с узким профилем. Характерный пример – сверхзвуковые истребители. Вот только для взлета ему нужна огромная полоса для разбега, а для посадки и вовсе специальный тормозной парашют. Если сделать крыло широким и толстым, как у винтовых транспортников, садиться будет намного проще, но и скорость в полете намного ниже. Как быть?

Вариантов два – оборудовать все аэродромы длинными-длинными полосами, чтобы их хватало для длинных разбегов и пробегов, либо сделать так, чтобы профиль крыла мог меняться на разных стадиях полета. Как ни странно звучит, второй вариант намного проще.

Как взлетает самолет
Чтобы самолет взлетел, нужно, чтобы подъемная сила крыла превысила силу притяжения. Это азы, с которых начинается теоретическое обучение на пилота . Когда самолет стоит на земле, подъемная сила равна нулю. Увеличить ее можно двумя способами.

Первый – включить двигатели и начать разбег, потому что подъемная сила зависит от скорости. В принципе, для легкого самолета как Цессна-172 на длинной полосе этого вполне может хватить. Но когда самолет тяжелый, а полоса короткая, простого набора скорости не хватит.

Тут мог бы помочь второй вариант – увеличить угол атаки (задрать нос самолета вверх). Но и здесь не все так просто, потому что увеличивать угол атаки бесконечно нельзя. В какой-то момент он превысит так называемое критическое значение, после которого самолет рискует попасть в сваливание. Меняя форму крыла с помощью закрылков, пилот самолета может регулировать скорость (не самолета, а всего лишь обтекания крыла воздушным потоком) и угол атаки.

Обучение пилотированию: от теории к практике
Выпущенные закрылки меняют профиль крыла, а именно - увеличивают его кривизну. Очевидно, что вместе с этим увеличивается сопротивление. Зато уменьшается скорость сваливания. На практике это означает, что угол атаки не изменился, а подъемная сила выросла.

Почему это важно
Чем меньше угол атаки – тем ниже скорость сваливания. То есть теперь пилот самолета может увеличить угол атаки и взлететь, даже если не хватает скорости (мощности двигателя) и длины полосы для разбега.

Но у любой медали есть обратная сторона. Увеличение подъемной силы неизбежно ведет к увеличению сопротивления. То есть придется увеличить тягу, а значит вырастет расход топлива. Зато на посадке избыточное сопротивление напротив даже полезно, поскольку помогает быстрее затормозить самолет.

Все дело в градусах
Конкретные значения сильно зависят от модели, веса, загрузки самолета, длины ВПП, требований производителя и много-много чего еще, чуть ли не температуры за бортом. Но как правило для взлета закрылки выпускают на 5-15 градусов, для посадки – на 25-40 градусов.

Почему так – уже было сказано выше. Чем круче угол – тем больше сопротивление, тем эффективнее торможение. Отличный способ увидеть все это на практике – отправиться в пробный полет, в котором пилот самолета все покажет, расскажет и даже даст попробовать управлять самолетом самому.

Понимая это, легко понять и то, почему после перехода в горизонтальный полет закрылки, напротив, жизненно важно убрать. Дело в том, что изменившаяся форма крыла вызывает не просто сопротивление, но и меняет само качество набегающего потока. Конкретно речь идет о так называемом приграничном слое – том, который непосредственно соприкасается с крылом. Из плавного (ламинарного) он превращается в турбулентый.

И чем сильнее кривизна крыла – тем сильнее турбулентность, а там уже и до срыва потока недалеко. Более того, на высокой скорости «забытые» закрылки могут элементарно оторваться, а это уже критично, поскольку любая ассиметрия (вряд ли их оба оторвет одновременно) грозит потерей управления, вплоть до штопора.

Что еще бывает
Предкрылки. Как видно из названия, расположена в передней части крыла. По своему предназначению закрылками – позволяют регулировать несущие свойства крыла. в частности, летать на больших углах атаки, а значит на меньших скоростях.

Элероны. Расположены ближе к концовкам крыльев и позволяют регулировать крен. В отличие от закрылков, работающих строго синхронно, элероны двигаются дифференциально – если один вверх, то второй вниз.

Особой разновидностью элеронов являются флапероны – гибрид закрылков (англ. flap) и элеронов (aileron). Чаще всего ими оборудуют легкие самолеты.

Интерцепторы. Своего рода «аэродинамический тормоз» - расположенные на верхней плоскости крыла поверхности, которые при посадке (или прерванном взлете) поднимаются, увеличивая аэродинамическое сопротивление.

А еще бывают элерон-интерцепторы, многофункциональные интерцепторы (они же спойлеры), плюс каждая из перечисленных выше категорий имеет свои разновидности, так что перечислить все в рамках статьи невозможно физически. Как раз для этого и существует летная школа и курсы обучения на пилота .

Термин «механизация крыла» на английском звучит как «high lift devices», что в дословном переводе – устройства для повышения подъемной силы. Именно это и является основным предназначением механизации крыла, а где находятся плоскости, относящиеся к механизации крыла и каким образом увеличивают подъемную силу, а также зачем это нужно - расскажет эта статья.

Механизация крыла – перечень устройств, которые устанавливаются на крыло самолета для изменения его характеристик на протяжении разных стадий полета. Основное предназначение крыла самолета – создание подъемной силы. Этот процесс зависит от нескольких параметров – скорости движения самолета, плотности воздуха, площади крыла и его коэффициента подъемной силы.

Механизация крыла непосредственно влияет на площадь крыла и на его коэффициент подъемной силы, а также косвенно на его скорость. Коэффициент подъемной силы зависит от кривизны крыла и его толщины. Соответственно можно сделать вывод, что механизация крыла кроме площади крыла еще и увеличивает его кривизну и толщину профиля.


На самом деле не совсем так, ведь увеличение толщины профиля связано с большими технологическими сложностями, не столь эффективно и больше ведет к увеличению лобового сопротивления, потому этот пункт необходимо отбросить, соответственно механизация крыла увеличивает его площадь и кривизну. Делается это с помощью подвижных частей (плоскостей), расположенных в определенных точках крыла. По месторасположению и функциям, механизация крыла делится на закрылки, предкрылки и спойлеры (интерсепторы).

Закрылки самолета. Основные виды.

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По своему устройству и манипуляциям закрылки делятся на:

  • простые закрылки (самый первый и самый простой вид закрылок)
  • щитовые закрылки
  • щелевые закрылки
  • закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)

Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.

Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.

Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.

Предкрылки. Основные функции.

Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.

Спойлеры и их задачи.

Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.

Многие из тех, кто летал на пассажирских лайнерах и сидел у иллюминатора возле крыла самолета видел, как перед взлетом (или посадкой) крыло как бы «расправляется». Из его задней кромки «выползают» новые плоскости, слегка загибаясь вниз. А при пробеге после посадки на верхней поверхности крыла поднимается что-то похожее на почти вертикальные щитки. Это и есть элементы механизации крыла.

Человек всегда стремился летать быстрее. И это у него получалось 🙂 . «Выше, быстрее – всегда!» Скорость – предмет устремлений и камень преткновения. На высоте быстро – это хорошо. Но на взлете и посадке иначе. Большая взлетная скорость не нужна. Пока ее самолет (особенно если это большой тяжелый лайнер) наберет, никакой полосы не хватит, плюс ограничения по прочности шасси. Посадочная скорость тем более не должна быть очень большой. Или шасси разрушится или экипаж с пилотированием не справится. Да и пробег после посадки будет немаленький, где набрать таких больших аэродромов 🙂 .

Вот тут человеку и пригодилась его смекалка-хитрость 🙂 . Выход был найден, в общем-то, без особого труда. Это взлетно-посадочная механизация крыла.

Механизация включает в себя закрылки, предкрылки, интерцепторы, спойлеры, флапероны, активные системы управления пограничным слоем и т. д. для наглядности приведем всем известный рисунок:

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны.

Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. Они помогают нашему самолету улучшить несущую способность крыла при взлетах, посадках, наборах высоты и прочих маневрированиях. Рабочим языком выполняют роль паруса при взлете и парашюта при посадках))

В зависимости от типа самолета, применяются разные схемы:

Як-40 на посадку с выпущенными закрылками:

ПРЕДКРЫЛКИ

Следующий элемент механизации крыла - предкрылки. Чтобы расширить возможность самолета летать на больших углах атаки (а значит и с меньшей скоростью) и были придуманы предкрылки.

Обычный щелевой предкрылок в выпущенном состоянии:

Вы наверняка видели, как самолеты после отрыва от полосы не плавно поднимаются вверх, а делают это интенсивно, довольно резко задрав нос. Это как раз самолет с действующими предкрылками.

По конструкции и принципу действия предкрылки похожи на щелевые закрылки, только устанавливаются, естественно, на передней кромке крыла.

Ту-154 на рулении, с выпущенными предкрылками:

Предкрылки и закрылки обычно работают в комплексе. Однако для разных типов самолетов возможны специфичные режимы их раздельной работы. Например дозаправка в воздухе.

Вот пожалуй и все об элементах, относящихся к понятию взлетно-посадочная механизация крыла. Эти элементы позволяют самолету уверенно чувствовать себя на взлетно-посадочных режимах и при этом довольно внушительно (интересно) выглядят

ЭЛЕРОНЫ

А теперь об оставшихся элементах крыла, указанных на рисунке в начале статьи.Элероны.

Их бы я к механизации крыла не относил. Это органы поперечного управления самолетом, то есть управления по каналу крена. Работают они дифференциально. На одном крыле вверх, на втором вниз. Однако существует такое понятие, как флапероны, слегка «роднящее» 🙂 элероны с закрылками. Это так называемые «зависающие элероны». Они могут отклоняться не только в противоположные стороны, но, если надо и в одну тоже. В этом случае они выполняют роль закрылков. Применяются они не часто, в основном на легких самолетах.

ИНТЕРЦЕПТОРЫ

Следующий элемент – интерцепторы. Это плоские элементы на верхней поверхности крыла, которые поднимаются (отклоняются) в поток. При этом происходит торможение этого потока, как следствие увеличение давления на верхней поверхности крыла и далее, понятно, уменьшение подъемной силы этого крыла. Интерцепторы еще иногда называют органами непосредственного управления подъемной силой.

Тормозим интерцепторами:

В зависимости от предназначения и площади поверхности консоли, расположения её на крыле и т. д. интерцепторы делят на элерон-интерцепторы и спойлеры

Эффект действия интерцепторов используется в процессе пилотирования и для торможения. В первом случае они работают (отклоняются) в паре с элеронами (теми, которые отклоняются вверх) и называются элерон-интерцепторы. Пример самолетов с такими органами управления – ТУ-154, В-737.

Боинг-737. Работает левый элерон-интерцептор для ликвидации правого крена:

Во втором случае синхронный выпуск интерцепторов позволяет изменить вертикальную скорость самолета без изменения угла тангажа (то есть не опуская его нос). В этом случае они работают как воздушные тормоза и называются спойлерами. СПОЙЛЕРЫ обычно применяются еще и после посадки одновременно с ревесом тяги (если, конечно, таковой имеется 🙂). Главная их задача в этом случае быстро уменьшить подъемную силу крыла и тем самым прижать колеса к бетонке, чтобы можно было эффективно тормозить тормозами колес.

Выпущенные спойлеры (посадка) :

ЗАКОНЦОВКИ КРЫЛА

Законцовки крыла служат для увеличения эффективного размаха крыла, снижая лобовое сопротивление, создаваемое срывающимся с конца стреловидного крыла вихрем и, как следствие, увеличивая подъёмную силу на конце крыла. Также законцовки позволяют увеличить удлинение крыла, почти не изменяя при этом его размах.

Применение законцовок крыла позволяет улучшить топливную экономичность у самолётов, либо дальность полёта у планёров. В настоящее время одни и те же типы самолётов могут иметь разные варианты законцовок.

Вот вкратце такова механизация крыла. Именно вкратце.На самом деле эта тема намного шире.

Если хотите блеснуть эрудицией в узком кругу, знайте! у большинства современных самолетов — ОДНО крыло! А слева и справа это полуКрылья!))

Но сегодня я итак уже слишком много занимаю Ваше внимание. Думаю, что все еще впереди

Публикации по теме